

Pergamon

0040-4039(94)E0219-N

Electrochemically Induced Intramolecular Cyclization of 1,2-bis(1,4-dithiafulven-6-yl)benzenes

Pierre Frère, Alain Gorgues, Michel Jubault,^{*}Amédée Riou, Yvon Gouriou and Jean Roncali

Laboratoire de Chimie Organique Fondamentale et Appliquée, Université d'Angers, 2 Bd Lavoisier, F- 49045 Angers, France, Fax (33) 41 73 53 52).

Abstract : Potentiostatic oxidation of the title compounds 1 induces their intramolecular cyclization in 2. A mechanism involving a protonic catalysis as determining step is proposed.

The molecular design of new π -donors of the TTF series in view of achieving the improvement of the (super)conducting properties of the resulting cation radical salts together with a better understanding of the structural variables which control these properties has attracted strong interest.¹ However, besides the accomplishment of such objectives, the manipulation of the molecular structure of the TTF precursor can considerably affect the fate of the cationic species resulting from its oxidation and hence the nature of the resulting product.

We have recently shown that ortho-bis(1,4-dithiafulven-6-yl)benzenes 1 can be readily converted with good yields into type 2 compounds by acid-catalyzed intramolecular cyclization.² Such compounds constitute interesting starting materials for the synthesis of new π -donors.³

As a further step we report here an analysis of the electrochemical behavior of compounds 1. We show that the intramolecular cyclization can be electrochemically induced with complete conversion. This process is interpreted by a mechanism involving as determining step, the catalysis of the cyclization by the protons released during the electrolysis of 1.

Cyclic voltammetry (CV) and preparative electrolyses were performed in a three-compartment cell equipped with a 1.5 mm² area Pt anode for CV and a 0.75 cm² one for preparative electrolyses. All potentials refer to the saturated calomel reference electrode (SCE). The electrolytic medium involved 1.2 10^{-3} M substrate and 0.1 M Bu₄NPF₆. The solvent (CH₂Cl₂, SDS spectrosol grade) was purified by filtration on basic Al₂O₃. Solutions were degassed by N₂ bubbling and experiments were run under an N₂ atmosphere.

Fig. 1a shows as a typical example the CV of **1bb**. Whatever scan rate (0.10 to 10 V s⁻¹) an irreversible oxidation peak is observed at 0.84 V (Epa₁). After exhaustive potentiostatic electrolysis at Epa₁ the initial anodic peak disappears while a new oxidation wave occurs at 1.00 V which exactly matches that of authentic compound **2bb** (Fig. 1b).

Fig. 2 shows the variation of the logarithm of the oxidation current (I_{ox}) corresponding to the potentiostatic electrolysis of 1bb at Epa₁. Contrary to what could be expected, the logI_{ox}(t) curve doest not fit a linear decay but exhibits a sharp current decrease, indicative of fast consumption of substrate.^{4,5} Coulometric measurements show that the number faradays per mol (*n*) required to achieve complete conversion in 2bb amounts only to 0.05 (Table 1). Similar results are obtained with 1aa and 1ab,⁶ the latter being converted in 2ab whose structure,⁷ and in particular the position of R and R', was fully ascertained by X-ray diffraction.⁸ A preparative electrolysis was carried out with the most soluble compound (1aa) and 2aa isolated in 73% yield after recrystallization.

These results are consistent with a fast chemical reaction following the initial electrochemical step. Furthermore, the fast decrease of I_{0x} and the surprising low *n* values strongly suggest that the overall cyclization process involves a catalytic step.

	Table 1		
		Epa ₁ (V/SCE)	n (F mol ⁻¹)
1aa	$R = R' = CO_2Me$	1.00	0.14
1ab	$R' = CO_2Me$, $R-R = (CH=CH)_2$	0.90	0.04
166	$R-R = R'-R' = (CH=CH)_2$	0.84	0.05

Our previous results on the acid-catalyzed cyclization of compounds 1^2 led us to suspect that protons could be also responsible for the present catalytic step. This hypothesis is supported by the inhibited conversion of 1 when electrooxidized in the presence of a non nucleophilic base such as 2,4,6-collidine. On the other hand, the higher *n* value obtained with **1aa** agrees with the slower conversion rate previously observed in the case of acid-catalyzed cyclization.²

The overall process can thus be explained by an ECC mechanism ⁹ involving an electrochemical step (E) and two subsequent chemical reactions (C) according to the following pathway (Scheme I): *i*) one-electron oxidation of 1 in 1^+ , *ii*) intramolecular cyclization of 1^+ in 2^+ , *iii*) decomposition of 2^+ in 2^+ with release of H⁺ and *iv*) proton-catalyzed conversion of 1 in 2 via 1⁺ according to the previously reported mechanism.²

Scheme 1

Preliminary UV-vis. studies performed in the presence of Na_2CO_3 suggest that 2⁻ *i.e.* the radical resulting from the deprotonation of 2⁺ is subject to further evolution, leading to the formation of other compounds whose identification is presently under investigation.

Chemical oxidation of 1aa by Br_2 with formation of another cyclized compound (3aa) has already been reported and a mechanism involving cyclization of the initially formed cation radical 1aa⁺⁺ proposed.¹⁰ A detailed analysis of the effects of Br_2 on 1aa allowed us to confirm the formation of 3aa by reaction of 1aa with 1 eq. Br_2 in CCl₄.

However, reaction of laa with only 0.2 eq. Br₂ leads to the exclusive formation of 2aa whereas 3aa is produced by further oxidation with an excess of Br₂ (Scheme II). Similary, 3ab¹¹ can be selectively obtained from either lab or 2ab. These last results clearly show that 2 in fact represents an intermediate compound between 1 and 3.

In the specific case of 1ab⁺ it seems reasonable to assume that the mechanism involves merely the more stable cation radical with the positive charge on the dithiolium moiety bearing the (CH=CH)₂ substituent and not on that with the electron-withdrawing CO₂Me groups.

Preliminary investigations on other vicinal dithiafulvenyl arenes or heteroarenes indicate that this reaction seems to be general and the corresponding results will be presented in the full paper.

References and notes

- (1) The Physics and Chemistry of Organic Superconductors, ed.Saito, G.; Kagoshima, S. Springer-Verlag, London (1990). b) Bryce, M.R. Chem. Soc. Rev. 1991, 20, 355.
- (2) a) Benhamed-Gasmi, A.S.; Frère, P.; Belyasmine, A.; Melik, K.M.A.; Hursthouse, M.B.; Moore, A.J.; Bryce, M.R.; Jubault, M.; Gorgues, A. Tetrahedron Lett. 1993, 34, 2131-2134. b) Frère, P. New πdonors from Ethylenic Tetrathiafulvalene Analogs, PhD Thesis, University of Angers 1993.
- (3) a) By hydrolysis of 2 ^(a) and subsequent olefination by Akiba's reagents ^(b); (a) Doad, G.J.S. J. Chem. Res. (S) 1987, 370. (b) Akiba, K.; Ishikawa, K.; Inamoto, N. Bull. Chem. Soc. Japan 1978, 51, 2674
- (4) In the absence of applied potential compounds 1 are stable in the electrolytic medium.
- (5) This reaction was also monitored by UV-vis spectroscopy and HPLC. UV-Vis, λmax (nm) (loge): 1bb 329 (4.21), 368 (4.25); 2bb 362 (4.20), 375 (4.23). HPLC, column C18, reverse phase, MeOH, UV-Vis detn. 370 nm.
- (6) Prepared according to (1) by a one pot bis-Wittig olefination of orthophthaldehyde, by reacting first the (CH=CH)₂ substituted P-ylid (Et₃N, MeCN, rt, 15 min., and then 1.5 eq. of the CO₂Me substituted Pylid (12 hrs), 64% overall yield after crystn. from THF-EtOH. Orange crystals, m.p. 127°C (dec.) satisfactory m.s. and elemental analysis. ¹H nmr (CDCl₃): 7.50 and 7.33(2d, 2H, arom.), 7.20 (m, 4H, arom.), 7.09 (m 2H, arom), 6.48 and 6.47 (2s, 2H, H-C=), 3.85 and 3.80 (2s, 6H, CO₂Me).
- 7) Orange crystals, m.p. 174°C, satisfactory m.s. and elemental analysis. ¹H nmr (CDCl₂): 7.58 (d, 1H, arom.), 7.29 (s, 1H, arom.), 7.29 (m, 4H, arom.), 7.10 (m, 2H, arom), 4.18 (s, 2H, CH₂), 3.93 and 3.89 (2s, 6H, CO₂Me).
- (8) Crystal data for 2ab : C₂₂H₁₆O₄S₄, Mr 472.63; monoclinic, space group P2₁/c (Z=4); a= 8.494(7)Å, b= 23.56(4)Å, c = 10.47(2)Å, $\beta = 93.02(9)$; μ (MoK α) = 4.61 cm⁻¹; F(000) = 976; data collected at 120 K using graphite monochromated MoKa radiation ($\lambda = 0.7173$ Å) and an Enraf- Nonius CAD4-F diffractometer. The crystal structure was solved by direct methods and refined by full-matrix least-squares techniques, 3179 unique reflections (Rint = 0.068) of which 1575 with I> $3\sigma(I)$ were used. R = 0.082; Rw = 0.074.
- (9) Tallec, A. Electrochimie Organique, Masson, Paris, 1985, p. 97. (10) Lakshmikanthan, M.V.; Cava, M.P.; Caroll, P.J. J. Org. Chem. 1984, 49, 726-728.
- (11) Red powder, m.p. 210°C (dec.); satisfactory m.s. and elemental analysis. ¹H nmr (CDCl₃): 7.55-7.20 (m, 8H, arom.), 3.96 and 3.92 (2s, 6H, CO₂Me).

(Received in France 16 December 1993; accepted 20 January 1994)